
A class of exactness properties characterized via

left Kan extensions

Pierre-Alain Jacqmin

Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, Chemin du

Cyclotron 2, B 1348 Louvain-la-Neuve, Belgium

Abstract

We consider a general class of exactness properties on a �nitely complete category,
all of which can be expressed as the condition that a certain morphism in a diagram
is a strong epimorphism. For each such exactness property, we characterize �nitely
bicomplete categories having the property by restricting the condition to those dia-
grams built from only one object in the category via a left Kan extension. In the
regular context, this generalizes the theory of approximate co-operations introduced
by D. Bourn and Z. Janelidze. As an application, we deduce from this a characteri-
zation of (essentially) algebraic categories satisfying such a given exactness property.
The pointed version of these exactness properties is also studied.
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Introduction

In [24], we studied exactness properties on a regular category [2] which can be expressed as:
`for any diagram of a given �nite shape, a given morphism between �nite limits built from
this diagram is a regular epimorphism'. The properties of being a Mal'tsev category [11],
or more generally an n-permutable category [10] are examples of such properties. We
extracted the Mal'tsev conditions characterizing varieties of universal algebras satisfying
them, and generalized the theory of approximate co-operations from [8, 30, 19, 22]. The
aim of the present paper is to generalize these results in several aspects.

First of all, we replace regular epimorphisms by strong epimorphisms in order to extend
our theory from the regular context to the �nitely complete context. Secondly, one will
now be allowed to build some �nite colimits from the starting diagram and some induced
morphisms from them. However, we conjecture that this does not add any new examples
(see Conjecture 7.6) and in each of our examples, the designated morphism required to
be a strong epimorphism will be built using only �nite limits and induced morphisms to
them. More importantly, we allow to add new morphisms in the diagram after having
already computed some limits or colimits. The main new example we are adding here is
protomodularity (in the sense of [4]). Indeed, as shown in [6], a �nitely complete category
is protomodular if and only if for each diagram
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with p ◦ s = 1W , considering the pullback of f along p,

P
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the morphism f ′ and s are jointly strongly epimorphic, i.e., for any extension of the above
diagram (2) as
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g
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with q◦g = f ′ and q◦h = s, then the morphism q is a strong epimorphism. Notice that the
morphism g here could not have been considered in the �rst diagram (1) since its domain is a
limit built from this original diagram. In the general case, the properties we are considering
will all look like: `starting from any diagram of a given �nite shape, constructing some
�nite (co)limits from it and induced morphisms by them, then considering any extension
of a given shape of the obtained diagram, constructing some �nite (co)limits and induced
morphisms, then considering any extension of the obtained diagram, and so forth, then a
morphism q : X → Y in the resulting diagram should be a strong epimorphism'. Using
the formalism of exactness sequents introduced in [23], we can represent such an exactness
property by a sequence of subsketch inclusions

∅ α1 //

α

33A1
β1
// B1

α2 // · · · αn // An
βn
// Bn ω // A β

// B

where A1 represents the shape of the initial diagram and each Ai (2 6 i 6 n) represents
a further extension. The sketches Bi encode the (co)limits and the induced morphisms to
consider. Of course some restrictions apply to this; they are listed by conditions (Ax 0)�
(Ax 5) in Section 1. Among them, (Ax 5) requires that the codomain Y of q ∈ Bn represents
a limit of a �nite diagram DY : HY → A1 in the initial sketch A1.

Given such an exactness property, we explain how to construct, from any object C
in a �nitely bicomplete category C, a universal Bn-structure LC by means of successive
pointwise left Kan extensions. This Bn-structure is the re�ection of the constant diagram
∆C : HY → C along the composition functor

(DBnY )C : BnC→ HY C

where DBnY = βn ◦ αn ◦ · · · ◦ β1 ◦DY and is thus denoted by Lan
DBnY

∆C in the text. For
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the protomodularity example, this Bn-structure LC is given by

(0×!C ,∇C 2C) + C

( p2ι2 )
ww

0×!C ,∇C 2C

p1
��

p2
//

ι′1
22

2C

∇C
��

0
!C

// C

ι2

OO
ι′2

DD

where 0 ×!C ,∇C 2C is the pullback of the codiagonal ∇C : 2C → C along the unique
morphism 0 → C from the initial object. Our main result, Theorem 3.1, states that C
satis�es the exactness property if and only if, for each object C, the morphism LC(q) is a
strong epimorphism. Moreover, in the regular �nitely cocomplete context, this is equivalent
to require that, for each object C, the pullback γC of LC(q) along the universal morphism
eC : C → LC(Y ) is a regular epimorphism.

Ap(C)
δC //

γC

��

LC(X)

LC(q)
��

C eC
// LC(Y )

This result generalizes the characterization via approximate co-operations from [9] in the
protomodular case and from [8, 30, 19, 22] in the case of matrix conditions, where the
morphism γC : Ap(C) → C is called an `approximation'. Using an appropriate presen-
tation of the Mal'tsev property, we also deduce from this theorem that a �nitely bicom-
plete category is a Mal'tsev category [12] if and only if for any object C, the morphism(
ι1 ι2
ι2 ι2
ι2 ι1
ι2 ι2

)
: 4C → Eq[∇C ] is a strong epimorphism, where Eq[∇C ] is the kernel pair of the

codiagonal ∇C .
The validity of such an exactness property in the particular case of a variety of universal

algebras can be further reduced to the condition that, considering the free algebra Fr({x})
on one variable x, the variable x is in the image of γFr({x}), i.e., that eFr({x})(x) is in the
image of LFr({x})(q) (see Theorem 4.1). It seems we can easily extract from this result a
Mal'tsev condition characterizing varieties with the given property, generalizing many such
characterizations, e.g., those from [7, 16, 32, 34]. However, we have not yet been able to
formally prove this always gives rise to a Mal'tsev condition (see Conjecture 7.5).

Finally, we also consider the pointed version of this class of exactness properties and
mention the counterpart of the above theorems in the pointed context. As additional
examples, one gets the following properties (some of which requiring to be considered in
the regular �nitely cocomplete pointed context): being a normal category [31], having
normal projections [26], having products commuting with coequalizers, and all the pointed
matrix conditions [29] (including the examples of being unital [5], strongly unital [5] and
subtractive [27]).

The paper is organized as follows. We formally describe in Section 1 the exactness
properties we are studying in this paper. To this end, we need to recall some aspects of the
theory of exactness sequents from [23]. In Section 2, for each such exactness property, we
build the universal Bn-structure associated to each object of a �nitely bicomplete category.
Section 3 is devoted to the characterization of �nitely bicomplete categories satisfying such
an exactness property by means of this universal Bn-structure associated to each object.
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This also gives rise to the generalization of the theory of approximate co-operations in
the regular context. In Section 4, we further extend this characterization in the varietal
case, giving an easy way to �nd the algebraic condition associated to each of these ex-
actness properties. Section 5 is devoted to the study of some examples: protomodularity,
involution-rigidness [32] and the Mal'tsev property. We then treat the pointed context in
Section 6 and give additional examples in that context. In Section 7, we make further
remarks, among which we give a generalization of the characterization in the varietal case
to the case of essentially algebraic categories [1]. We end Section 7 with some conjectures.
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1 Some exactness properties

In this section, we formally describe the exactness properties we are going to work with.
In order to do so, we need to recall some notions from [23, 24] (the interested reader
is referred to those references for more details on these notions). For a graph G (i.e., a
diagram d, c : E ⇒ V in the category Set of sets), a commutativity condition in G is a pair
of paths

((A0, f1, A1, . . . , fm, Am), (B0, g1, B1, . . . , gm′ , Bm′))

in G such that A0 = B0 and Am = Bm′ . We represent it by

fm · · · f1 = gm′ · · · g1

or by
fm · · · f1 = 1B0

if m′ = 0 (and similarly if m = 0). A �nite diagram in G is given by a �nite graph
H together with a morphism of graphs D : H → G. A �nite limit condition (respec-
tively, a �nite colimit condition) in G is an equivalence class of 4-tuples (H, D,C, (cH)H∈H)
where D : H → G is a �nite diagram, C is an object in G and for each object H in H,
cH : C → D(H) (respectively, cH : D(H) → C) is an arrow in G. Two such 4-tuples
(H, D,C, (cH)H∈H) and (H′, D′, C ′, (c′H′)H′∈H′) are considered to be equivalent if C = C ′

and if there exists an isomorphism of graphs I : H → H′ such that D′I = D and cH = c′I(H)

for any H ∈ H. Such a condition [(H, D,C, (cH)H∈H)] is represented by

(C, (cH)H) = limit(H, D) (respectively by (C, (cH)H) = colimit(H, D)).

Finite limit conditions and �nite colimit conditions are called convergence conditions. A
sketch is then a �nite graph equipped with a set of commutativity conditions and a set of
convergence conditions. A morphism of sketches is a morphism µ : G → G′ of underlying
graphs of sketches which carries each commutativity condition on G to a commutativity
condition on G′ and each convergence condition on G to a convergence condition on G′. We
denote by

G : Sk→ FGraph
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the forgetful functor from the category of sketches to the category of �nite graphs. A
subsketch of a sketch B is a subgraph A of the underlying graph of B equipped with a
sketch structure that turns the inclusion of graphs A → B into a sketch morphism. Such
morphisms are called subsketch inclusions.

Given a sketch A and a category C, an A-structure in C is a morphism F : A → C of
underlying graphs which carries each commutativity condition of A to an actual commu-
tative diagram in C, and each �nite limit/colimit condition of A to an actual limit/colimit
in C. The category of A-structures in C (and natural transformations as morphisms) is
denoted by AC. Every morphism β : A → B of sketches gives rise to a functor

βC : BC→ AC

by `pre-composing' with β.
An exactness sequent (called an ∅-sequent in [23]) is a subsketch inclusion β : A → B

considered as a sequence of subsketch inclusions

∅ α // A β
// B

starting with the empty sketch ∅. We denote such a sequent by α ` β. As detailed
below, we are only interested in particular exactness sequents where β is `constructible'.
In that case, βC is fully faithful for any category C, and we write `α `C β' when βC is an
equivalence of categories (see Lemma 1.4 in [23]).

Each �nite category A induces a sketch U(A) whose underlying graph is the underlying
graph of A and whose commutativity conditions are:

• ((A, f,B, g, C), (A, g◦f, C)) for any pair of composable arrows f : A→ B and g : B →
C in A;

• ((A, 1A, A), (A)) for any object A in A.

There are no convergence conditions on U(A). A U(A)-structure in a category C thus cor-
responds to a functor A→ C. A subsketch inclusion α : B → A is said to be unconditional
of �nite kind when A is the underlying sketch U(A) of a �nite category A further equipped
with the commutativity and convergence conditions which already appear in B.

If A is a sketch with underlying graph G and if fm · · · f1 = gm′ · · · g1 is a commutativity
condition in the graph G (one that is not necessarily included in A), we write

fm · · · f1 ≡A gm′ · · · g1

if, for any A-structure F in any category C, the equality

F (fm) ◦ · · · ◦ F (f1) = F (gm′) ◦ · · · ◦ F (g1)

holds. Similarly, if D : H → G is a �nite diagram in G and if (pH : C → D(H))H∈H is a
family of paths in G indexed by the objects of H, we write

(C, (pH)H) ≡A limit(H, D)

if, for any A-structure F in any category C, the cone (F (C), (F (pH))H) is an actual limit
of F ◦D in C. As usual, F (pH) represents the composite in C of the actual images under
F of the arrows constituting the path pH . We also use an analogous notation for colimits.
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The exactness sequents α ` β we are going to consider in this paper can be decomposed
as sequences of subsketch inclusions as in

∅ α1 //

α

33A1
β1
// B1

α2 // · · · αn // An
βn
// Bn ω // A β

// B (3)

where

(Ax 0) n > 1 is a natural number, α = ω ◦ βn ◦ αn ◦ · · · ◦ β1 ◦ α1 and B0 = ∅ is the empty
sketch;

(Ax 1) for each i ∈ {1, . . . , n}, the subsketch inclusion αi : Bi−1 → Ai is unconditional of
�nite kind (i.e., Ai is the underlying sketch of a �nite category Ai further equipped
with the commutativity and convergence conditions coming from Bi−1);

(Ax 2) for each i ∈ {2, . . . , n} and for each morphism f : B → B′ in Ai such that B,B′ ∈
Bi−1, there exists a path p : B → B′ in Bi−1 such that the composite of p in Ai is f
and if p, p′ : B → B′ are two such paths then p ≡Bi−1 p

′;

(Ax 3) for each i ∈ {1, . . . , n}, the subsketch inclusion βi : Ai → Bi can be decomposed as a
�nite sequence

Ai = Bi,0 // Bi,1 // Bi,2 // · · · // Bi,ki = Bi

of subsketch inclusions (with ki > 0), where every next subsketch Bi,j+1 of Bi is
obtained from the previous subsketch Bi,j by any one of the following procedures:

(a) include some commutativity conditions fm · · · f1 = gm′ · · · g1 expressed using
objects and arrows which belong to Bi,j and for which fm · · · f1 ≡Bi,j gm′ · · · g1

holds (in other words, include some redundant commutativity conditions),

(b) include some convergence conditions (C, (cH)H) = limit(H, D) (or (C, (cH)H) =
colimit(H, D) respectively) where C, the cH 's and D all belong to Bi,j and
for which (C, (cH)H) ≡Bi,j limit(H, D) holds (respectively (C, (cH)H) ≡Bi,j
colimit(H, D)) (in other words, include some redundant convergence condi-
tions),

(c) include an arrow f , not already in Bi,j , and a commutativity condition f =
gm · · · g1 where m > 0 and where g1, . . . , gm are arrows in Bi,j ,

(d) include an object C, not already in Bi,j , together with the pairwise distinct
arrows cH 's and the condition (C, (cH)H) = limit(H, D), where D is a �nite
diagram in Bi,j ,

(e) given in Bi,j a condition (C, (cH)H) = limit(H, D), an object A, a family
(aH : A→ D(H))H∈H of arrows and commutativity conditions D(h) ·aH = aH′

for each arrow h : H → H ′ in H, include an arrow f : A → C, not already
in Bi,j , and commutativity conditions cH · f = aH for each object H ∈ H,

(f) include an object C, not already in Bi,j , together with the pairwise distinct
arrows cH 's and the condition (C, (cH)H) = colimit(H, D), where D is a �nite
diagram in Bi,j ,

(g) given in Bi,j a condition (C, (cH)H) = colimit(H, D), an object A, a family
(aH : D(H)→ A)H∈H of arrows and commutativity conditions aH′ ·D(h) = aH
for each arrow h : H → H ′ in H, include an arrow f : C → A, not already
in Bi,j , and commutativity conditions f · cH = aH for each object H ∈ H;
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(Ax 4) there exists in Bn an arrow q : X → Y such that

1. the subsketch inclusion ω : Bn → A is constructed by adding to Bn an object
Y ′ (not already in Bn) and arrows lq : X → Y ′, mq : Y ′ → Y and iY ′ : Y

′ → Y ′,
together with the commutativity conditions q = mq · lq and iY ′ = 1Y ′ and the
convergence condition (Y ′, (iY ′ , iY ′ ,mq)) = limit(HPb, D

mq ,mq
Pb ) where HPb is

the graph
V2

v2
��

V1 v1
// V3

and D
mq ,mq
Pb : HPb → A is de�ned via D

mq ,mq
Pb (v1) = mq = D

mq ,mq
Pb (v2),

2. the subsketch inclusion β : A → B is obtained by adding to A the convergence
condition (Y ′, (mq)) = limit(H∗, DY

∗ ) whereH∗ is the graph with a single object
∗ and no arrows and DY

∗ is de�ned by DY
∗ (∗) = Y ;

(Ax 5) for the codomain Y of q, there exists a �nite diagram DY : HY → A1 in A1 and a
family of paths (pYH : Y → DBnY (H))H∈HY in Bn such that

(Y, (pYH)H) ≡Bn limit(HY , DBnY )

where we denoted βn ◦ αn ◦ · · · ◦ β1 ◦DY by DBnY for the sake of brevity.

By Lemma 1.2 in [24], the condition (Ax 5) is always satis�ed if the following two
further conditions are satis�ed:

• Y ∈ B1;

• in the decomposition of β1 : A1 → B1 as in condition (Ax 3), procedures (b), (f)
and (g) are not used.

The conditions (Ax 3) and (Ax 4) imply in particular that the subsketch inclusions βi
(for each i ∈ {1, . . . , n}) and β are constructible in the sense of [23]. This implies that,
for any category C, the functors (β1)C, . . . , (βn)C and βC are fully faithful. Moreover, if
the category C is �nitely complete and �nitely cocomplete, the functors (β1)C,. . . ,(βn)C
are equivalences of categories. We denote by (βi)

−1
C : AiC → BiC their unique (up to

isomorphism) pseudo-inverses, which are chosen such that (βi)C ◦ (βi)
−1
C = 1AiC (but we

only have an isomorphism (βi)
−1
C ◦ (βi)C ∼= 1BiC). For an Ai-structure Fi in C, we denote

by Fi the Bi-structure (βi)
−1
C (Fi), which is obtained from Fi by constructing �nite limits,

�nite colimits, induced morphisms to those limits or from those colimits and composite
morphisms as prescribed by the step by step construction of βi described in (Ax 3). By
abuse of notation, we will also denote by Fi the functor Fi : Ai → C corresponding to the
Ai-structure Fi.

The condition α `C β for a category C can be stated as: `for any A-structure F in C,
the morphism F (mq) is an isomorphism'. In a category with �nite limits, an extremal

epimorphism (or equivalently a strong epimorphism) is a morphism p such that for any
factorization p = m ◦ l with m a monomorphism, one has that m is an isomorphism.
Therefore, if the category C is �nitely complete, the condition α `C β can be equivalently
rephrased as: `for any Bn-structure Fn in C, the morphism Fn(q) is a strong epimorphism'.
If C is �nitely complete and �nitely cocomplete, it can even be formulated as: `for any
functor F1 : A1 → C, considering its extension F1 as a B1-structure, for any extension of
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it as a functor F2 : A2 → C, considering its extension F2 as a B2-structure, . . . , for any
extension of Fn−1 as a functor Fn : An → C, considering its extension Fn as a Bn-structure,
then Fn(q) is a strong epimorphism'.

∅ α1 // A1
β1

//

∀F1

++

B1
α2 //

F1

''

· · · αn // An
βn

//

∀Fn
ww

Bn ω //

Fn

ss

A β
// B

C

2 Kan extensions

Let us suppose we are given a �nite graph H and a diagram D : H → A in a �nite
category A. By abuse of notation, we also denote by H the sketch whose underlying graph
is H and which has no conditions and by D : H → U(A) the sketch morphism induced by
the diagram D. Given a �nitely cocomplete category C, the functor DC : U(A)C → HC
has a left adjoint LanD : HC → U(A)C, which can be computed via the pointwise left
Kan extension formula. We recall that given an H-structure E in C (i.e., a diagram
E : H → C), the left Kan extension LanD E is constructed as follows. For an object
A ∈ A, we consider the �nite graph (D ↓ A) whose objects are pairs (H, f) with H ∈ H
and f : D(H) → A ∈ A and whose arrows h : (H, f) → (H ′, f ′) are arrows h : H → H ′

in H such that f ′ ◦ D(h) = f . The object (LanD E)(A) is the colimit of the diagram
E ◦ ϕA : (D ↓ A)→ C where ϕA : (D ↓ A)→ H is the forgetful morphism of graphs. If we
denote by sA(H,f) : E(H)→ (LanD E)(A) the legs of the colimits, the image of a morphism

a : A → A′ in A under LanD E is uniquely determined by (LanD E)(a) ◦ sA(H,f) = sA
′

(H,a◦f)

for each (H, f) ∈ (D ↓ A). The E-component λE : E → (LanD E) ◦ D of the unit is

determined by λEH = s
D(H)
(H,1D(H))

for each object H ∈ H.

H D //

E
""

U(A)

LanD E
��

C

λE

7?

Lemma 2.1. Let α : B → A be a subsketch inclusion satisfying

(i) α is unconditional of �nite kind (i.e., A is the underlying sketch of a �nite category A
further equipped with the commutativity and convergence conditions coming from B);

(ii) for each morphism f : B → B′ in A such that B,B′ ∈ B, there exists a path p : B →
B′ in B such that the composite of p in A is f and if p, p′ : B → B′ are two such

paths then p ≡B p′.

Let C be a �nitely cocomplete category. Then the functor αC : AC→ BC has a left-adjoint-

right-inverse Lanα : BC→ AC.

Proof. We consider the following commutative diagram of subsketch inclusions

G (B)
α′ //

iB

��

U(A)

jA

��

B α
// A
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where the underlying graph G (B) of B is considered as a sketch with no conditions. As
explained above, the functor α′C : U(A)C → G (B)C has a left adjoint Lanα′ : G (B)C →
U(A)C. We denote the unit of this adjunction by η : 1G (B)C → α′C ◦ Lanα′ and the counit
by ε : Lanα′ ◦α′C → 1U(A)C. Given E ∈ BC and B′ ∈ B, we can consider, for each (B, f) ∈
(α′ ↓ α′(B′)), the morphism s

α′(B′)
(B,f) = E(p) : E(B) → E(B′) in C where p : B → B′ is

any path in B whose composite in A is f as given by our assumption (ii). In view of
the uniqueness part of the assumption (ii), these morphisms are well de�ned and, using

that s
α′(B′)
(B′,1α′(B′))

= 1E(B′), it is routine to show that they form a colimit cocone under

iBC(E) ◦ ϕα′(B′). Since α′ is injective on objects, we can thus choose (Lanα′ i
B
C(E))(α′(B′))

to be E(B′). Therefore, for each E ∈ BC, we can choose ηiBC (E) to be the identity on i
B
C(E).

We thus suppose without loss of generality that η • iBC = 1iBC
and α′C ◦ Lanα′ ◦iBC = iBC. By

assumption (i), we know that the right bottom rectangle in the diagram of functors below
is a pullback.

BC 1BC

''

Lanα′ ◦iBC

��

Lanα
$$

AC αC //

jAC
��

BC
iBC
��

U(A)C
α′C

// G (B)C

Since the outer part of the diagram commutes, there exists a unique dotted functor making
the diagram commutative. We consider the natural transformation

ε • jAC : jAC ◦ Lanα ◦αC = Lanα′ ◦α′C ◦ jAC −→ jAC

satisfying

α′C • ε • jAC =
(
α′C • ε • jAC

)
◦
(
η •

(
iBC ◦ αC

))
=

(
α′C • ε • jAC

)
◦
(
η •

(
α′C ◦ jAC

))
= 1α′C◦j

A
C
.

Since pullbacks of functors are `strong' (see e.g. [23]), there exists a unique natural trans-
formation λ : Lanα ◦αC → 1AC such that jAC • λ = ε • jAC and αC • λ = 1αC . To prove
that Lanα is the left adjoint of αC with unit 11BC and counit λ, it remains to prove that
λ • Lanα = 1Lanα . Again since pullbacks of functors are strong, it su�ces to notice that

jAC • λ • Lanα = ε •
(
jAC ◦ Lanα

)
= ε •

(
Lanα′ ◦iBC

)
=

(
ε •

(
Lanα′ ◦iBC

))
◦
(
Lanα′ •η • iBC

)
= 1Lanα′ ◦iBC

and αC • λ • Lanα = 11BC .

Now let C be a �nitely bicomplete category C (i.e., a category with �nite limits and
�nite colimits) and α ` β an exactness sequent

∅ α1 //

α

33A1
β1
// B1

α2 // · · · αn // An
βn
// Bn ω // A β

// B

as described in (3) together with the notation introduced there. In particular, we consider
the �nite diagram DY : HY → A1 = U(A1) given by condition (Ax 5). As explained
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in the beginning of this section, the functor (DY )C has a left adjoint LanDY : HY C →
A1C. Moreover, by Lemma 2.1 and conditions (Ax 1) and (Ax 2), each of the functors
(α2)C, . . . , (αn)C has a left-adjoint-right-inverse. As explained in Section 1, the functors
(β1)C, . . . , (βn)C are equivalences and their pseudo-inverses (βi)

−1
C are chosen to be strict

right inverses. Composing all these left adjoints together, we get a left adjoint

Lan
DBnY

: HY C→ BnC

of (DBnY )C where DBnY = βn ◦ αn ◦ · · · ◦ β1 ◦DY as in condition (Ax 5). Concretely, given

a diagram E : HY → C, the left Kan extension Lan
DBnY

E of E along DBnY is constructed

as follows. Firstly, we construct the left Kan extension L1 = LanDY E of E along DY

together with the universal morphism λE : E → L1◦DY using the pointwise Kan extension
formula. We then consider the extension L1 of L1 as a B1-structure using the algorithmic
construction described by condition (Ax 3). Suppose by induction that, for some 1 6 i < n,
we have constructed an extension Li of L1 as a Bi-structure such that Li ◦βi ◦αi ◦· · ·◦β1 =
L1. The G (Bi)-structure Li ◦ iBi can be Kan extended along α′i+1 : G (Bi) → U(Ai+1) to
a functor L′i+1 : Ai+1 → C. In view of condition (Ax 2) and the pointwise Kan extension
formula, we can construct L′i+1 such that L′i+1 ◦α′i+1 = Li ◦ iBi . Since Li is a Bi-structure
and in view of condition (Ax 1), L′i+1 induces anAi+1-structure Li+1 such that Li+1◦αi+1 =
Li. We then construct its extension Li+1 as a Bi+1-structure such that Li+1 ◦ βi+1 = Li+1

using the algorithm provided by condition (Ax 3). This completes the induction. We then
set Lan

DBnY
E = Ln and the universal morphism is given by

λE : E → L1 ◦DY = Ln ◦DBnY

which is the E-component of the unit λ : 1HY C → (DBnY )C ◦ Lan
DBnY

of the adjunction

Lan
DBnY
a (DBnY )C.

3 Validity in �nitely bicomplete categories

For a graph H and an object C in a category C, we denote by ∆C : H → C the constant
diagram mapping each object of H to C and each arrow of H to the identity on C.

Let us now �x a �nitely bicomplete category C and α ` β an exactness sequent

∅ α1 //

α

33A1
β1
// B1

α2 // · · · αn // An
βn
// Bn ω // A β

// B

as described in (3). Condition (Ax 5) tells us that

(Y, (pYH)H) ≡Bn limit(HY , DBnY ).

Therefore, for any object C in C,

((Lan
DBnY

∆C)(Y ), ((Lan
DBnY

∆C)(pYH))H)

is the limit of
(Lan

DBnY
∆C) ◦DBnY .

The universal morphism

λ∆C : ∆C → (Lan
DBnY

∆C) ◦DBnY
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thus induces a unique morphism eC : C → (Lan
DBnY

∆C)(Y ) such that

(Lan
DBnY

∆C)(pYH) ◦ eC = λ∆C
H

for each H ∈ HY . Let us consider the following pullback square

Ap(C)
δC //

γC

��

(Lan
DBnY

∆C)(X)

(Lan
D
Bn
Y

∆C)(q)

��

C eC
// (Lan

DBnY
∆C)(Y )

where q : X → Y is the arrow in Bn given by condition (Ax 4). Each morphism f : C → C ′

in C induces a morphism of diagrams ∆f : ∆C → ∆C′ de�ned for each H ∈ HY by
(∆f )H = f . Let us prove that the equality

eC′ ◦ f = (Lan
DBnY

∆f )Y ◦ eC

holds by precomposing with each leg (Lan
DBnY

∆C′)(p
Y
H) of the limit:

(Lan
DBnY

∆C′)(p
Y
H) ◦ eC′ ◦ f

= λ
∆C′
H ◦ f

= λ
∆C′
H ◦ (∆f )H

= ((DBnY )C(Lan
DBnY

(∆f )))H ◦ λ∆C
H

= (Lan
DBnY

∆f )
DBnY (H)

◦ λ∆C
H

= (Lan
DBnY

∆f )
DBnY (H)

◦ (Lan
DBnY

∆C)(pYH) ◦ eC

= (Lan
DBnY

∆C′)(p
Y
H) ◦ (Lan

DBnY
∆f )Y ◦ eC

We deduce from it that the identities

eC′ ◦ f ◦ γC = (Lan
DBnY

∆f )Y ◦ eC ◦ γC
= (Lan

DBnY
∆f )Y ◦ (Lan

DBnY
∆C)(q) ◦ δC

= (Lan
DBnY

∆C′)(q) ◦ (Lan
DBnY

∆f )X ◦ δC

hold. Therefore, by the universality of the pullback, there exists a unique morphism
Ap(f) : Ap(C)→ Ap(C ′) such that

γC′ ◦Ap(f) = f ◦ γC

and
δC′ ◦Ap(f) = (Lan

DBnY
∆f )X ◦ δC .

This de�nes an endofunctor Ap: C→ C and a natural transformation γ : Ap→ 1C.

Theorem 3.1. Let C be a �nitely bicomplete category and α ` β an exactness sequent

∅ α1 //

α

33A1
β1
// B1

α2 // · · · αn // An
βn
// Bn ω // A β

// B

as described in (3). We consider the following statements using the above notation:
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1. α `C β;

2. for any diagram E : HY → C, the morphism (Lan
DBnY

E)(q) is a strong epimorphism

in C;

3. for any object C in C, the morphism (Lan
DBnY

∆C)(q) is a strong epimorphism in C;

4. for any object C in C, the morphism γC : Ap(C)→ C is a strong epimorphism in C.

We always have the implications 1 ⇔ 2 ⇔ 3 ⇐ 4. Moreover, if C is regular, we also have

the remaining implication 3 ⇒ 4.

Proof. The implications 1⇒ 2⇒ 3 are trivial, so let us prove 3 ∨ 4⇒ 1. Let Fn be any Bn-
structure in C. We must show that Fn(q) is a strong epimorphism. By condition (Ax 5),
we know that (Y, (pYH)H) ≡Bn limit(HY , DBnY ). So (Fn(Y ), (Fn(pYH))H) is the limit of

Fn ◦DBnY . The projections µH = Fn(pYH) give rise to a morphism of diagrams µ : ∆Fn(Y ) →
Fn ◦DBnY . By the universal property of the Kan extension, there exists a unique morphism

ν : Lan
DBnY

∆Fn(Y ) → Fn such that (ν •DBnY ) ◦ λ∆Fn(Y ) = µ. Since, for any H ∈ HY , we
have

Fn(pYH) ◦ νY ◦ eFn(Y ) = ν
DBnY (H)

◦ (Lan
DBnY

∆Fn(Y ))(p
Y
H) ◦ eFn(Y )

= ν
DBnY (H)

◦ λ
∆Fn(Y )

H

= µH

= Fn(pYH)

and since the family (Fn(pYH))H∈HY is jointly monomorphic, we know that νY ◦ eFn(Y ) =
1Fn(Y ). This proves that νY is a split epimorphism, and thus a strong epimorphism. It
remains to consider the following commutative diagram:

Ap(Fn(Y ))
δFn(Y )

//

γFn(Y )

��

(Lan
DBnY

∆Fn(Y ))(X)
νX //

(Lan
D
Bn
Y

∆Fn(Y ))(q)

��

Fn(X)

Fn(q)

��

Fn(Y ) //eFn(Y )

// (Lan
DBnY

∆Fn(Y ))(Y ) νY
// // Fn(Y )

Under the assumption 3, (Lan
DBnY

∆Fn(Y ))(q) is a strong epimorphism. Therefore, Fn(q) ◦
νX is a strong epimorphism and thus so is Fn(q). Under the assumption 4, γFn(Y ) =

νY ◦eFn(Y ) ◦γFn(Y ) = Fn(q)◦νX ◦δFn(Y ) is a strong epimorphism, thus so is Fn(q). Finally,
the implication 3 ⇒ 4 holds in the regular context since in that case, strong epimorphisms
are stable under pullbacks.

Remark 3.2. In the case where procedure (f) of condition (Ax 3) for α ` β is not used,
the assumption about the existence of colimits in Theorem 3.1 can be relaxed to the mere
existence of the colimits used in the construction of the left adjoint Lan

DBnY
. In particular,

the equivalence 1 ⇔ 3 in the �nitely complete context and the equivalence 1 ⇔ 4 in the
regular context just require the existence of the colimits in C used in the construction of
Lan

DBnY
∆C for each object C ∈ C.
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4 Validity in varieties

We now treat the case where C = V is a variety of universal algebras, i.e., a �nitary
single-sorted algebraic category. We denote by Fr({?}) the free algebra in V over one
generator ?.

Theorem 4.1. Let V be a variety of universal algebras. Let also α ` β be an exactness

sequent

∅ α1 //

α

33A1
β1
// B1

α2 // · · · αn // An
βn
// Bn ω // A β

// B

as described in (3). Using the notation introduced above, the following statements are

equivalent:

1. α `V β;

2. for any diagram E : HY → V, the morphism (Lan
DBnY

E)(q) is surjective;

3. for any V-algebra A, the morphism (Lan
DBnY

∆A)(q) is surjective;

4. for any V-algebra A, the morphism γA : Ap(A)→ A is surjective;

5. the morphism (Lan
DBnY

∆Fr({?}))(q) is surjective;

6. the morphism γFr({?}) : Ap(Fr({?}))→ Fr({?}) is surjective;

7. the element eFr({?})(?) is in the image of (Lan
DBnY

∆Fr({?}))(q);

8. the element ? is in the image of γFr({?}) : Ap(Fr({?}))→ Fr({?}).
Proof. The equivalences 1⇔ 2⇔ 3⇔ 4 follow directly from Theorem 3.1 since all varieties
of universal algebras are regular. The implication 3 ⇒ 5 is trivial. The implication 5 ⇒ 6
follows from the fact that regular epimorphisms are stable under pullbacks in any regular
category. The implication 6 ⇒ 8 is trivial and the equivalence 7 ⇔ 8 follows immediately
from the description of pullbacks in a variety. It remains to prove 8 ⇒ 4. Given any V-
algebra A and any element a ∈ A, we must show that a is in the image of γA. We consider
the unique homomorphism f : Fr({?}) → A such that f(?) = a. Since the following
diagram commutes by naturality of γ,

Ap(Fr({?}))
Ap(f)

//

γFr({?})

��

Ap(A)

γA

��

Fr({?})
f

// A

and since ? is in the image of γFr({?}) by assumption, we know that a is in the image of
γA ◦Ap(f) and thus in the image of γA.

5 Examples

In the display of the particular sketches below, we are going to use the simpli�cation rules
introduced in [23]. In particular, we display the convergence conditions by the limits and
colimits they represent. Moreover, in the display of graphs containing the underlying graph
of a category as a subgraph, we may omit to represent from this subgraph identity arrows
and composite of arrows which are already displayed.



5. Examples 14

5.1 Protomodularity

As a �rst example, let us study the case of protomodularity [4]. As shown in [6], a �nitely
complete category C is protomodular if and only if, for any diagram

Y

p

��

V
f
//W

s

OO

(4)

where p ◦ s = 1W , when considering the pullback (P, p′, f ′) of f along p,

P
f ′
//

p′

��

Y

p

��

V
f
//W

s

OO

the morphisms f ′ and s are jointly strongly epimorphic. This happens exactly when, for
any further extension of the above diagram to

X

q
~~

P
f ′
//

p′

��

g
33

Y

p

��

V
f
//W

s

OO h

KK

(5)

where q ◦ g = f ′ and q ◦ h = s, the morphism q is a strong epimorphism. This latter
property can be stated as the property α `C β for an exactness sequent α ` β as described
in (3) as follows. Firstly, let A1 be the path category associated to the graph displayed
in (4) and equipped with the condition p · s = 1W . By Lemma 3.2 in [25], we know that
A1 is a �nite category. We let A1 be the underlying sketch of A1. We then let B1 ⊇ A1 be
the sketch represented by

P
f ′
//

p′

��

Y

p

��

V
f
//W

s

OO

conditions from A1 together with:
(P, p′, f ′) represents the pullback of f along p.

Let also A2 be the path category associated to the graph displayed in (5) and equipped
with the conditions p · s = 1W , f · p′ = p · f ′, q · g = f ′ and q · h = s. It follows again from
Lemma 3.2 in [25] that A2 is a �nite category. We then let A2 = B2 ⊇ B1 be the underlying
sketch of A2 further equipped with the commutativity and convergence conditions from B1.
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As prescribed by condition (Ax 4), we de�ne A ⊇ B2 as the sketch represented by

Y ′

mq

��

iY ′

++ X

q
||

lq
oo

P
f ′
//

p′

��

g

44

Y

p

��

V
f

//W

s

OO h

II

conditions from B2 together with:
q = mq · lq
iY ′ = 1Y ′

(Y ′, iY ′ , iY ′) represents the kernel pair of mq.

Again as prescribed by condition (Ax 4), the sketch B is obtained by adding to A the
condition `mq represents an isomorphism'. By construction,

∅ α1 //

α

22A1
β1
// B1

α2 // A2
β2
// B2

ω // A β
// B

satis�es the conditions (Ax 0)�(Ax 5) described in (3). For (Ax 5), one can take HY to be
the graph with a single object ∗ and no arrow, DY : HY → A1 to be de�ned by DY (∗) = Y
and pY∗ to be the empty path on Y . As mentioned above, a �nitely complete category C
is protomodular if and only if α `C β.

Given any object C in a �nitely bicomplete category C, the Kan extension Lan
D
B2
Y

∆C

of the constant diagram ∆C : HY → C, constructed in the general case in Section 2, is de-
scribed as follows. We �rst need to compute the left Kan extension L1 = LanDY ∆C : A1 →
C of ∆C along DY . Using the pointwise Kan extension formula, it is given by the A1-
structure

2C

∇C
��

0
!C
// C

ι2

OO

in C where 0 is the initial object, !C is the unique morphism 0 → C, 2C is the cosquare
of C with coproduct injections ι1 and ι2 and ∇C is the codiagonal. We have obtained
L1(V ) = 0 since A1(Y, V ) = ∅, L1(W ) = C since A1(Y,W ) = {p} and L1(Y ) = 2C
since A1(Y, Y ) = {1Y , s ◦ p} and since the three graphs (DY ↓ A) for A = V,W, Y are
discrete. The extension of L1 as a B1-structure L1 is given by computing the pullback of
!C along ∇C .

0×!C ,∇C 2C

p1

��

p2
// 2C

∇C
��

0
!C

// C

ι2

OO

Since β2 = 1A2 , it remains to compute L2(X) via the pointwise Kan extension formula.
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This gives rise to the following extension L2 = L2 of L1

(0×!C ,∇C 2C) + C

( p2ι2 )
xx

0×!C ,∇C 2C

p1

��

p2
//

ι′1
33

2C

∇C
��

0
!C

// C

ι2

OO
ι′2

EE

where (0×!C ,∇C 2C) +C is the coproduct of 0×!C ,∇C 2C and C with coproduct injections
ι′1 and ι′2 and where ( p2ι2 ) is the morphism induced by p2 and ι2. Theorem 3.1 (together
with Remark 3.2) tells us that a �nitely complete category C with �nite coproducts is
protomodular if and only if, for any object C in C, ( p2ι2 ) is a strong epimorphism, i.e., p2

and ι2 are jointly strongly epimorphic. This particular case of Theorem 3.1 is contained
in Theorem 6.4 of [9]. In addition, if C is a regular category with �nite coproducts, we
know from Theorem 3.1 that C is protomodular if and only if, for any object C in C, the
pullback p′1 of ( p2ι2 ) along ec = ι1 is a regular epimorphism.

C ×ι1,( p2ι2 ) ((0×!C ,∇C 2C) + C)
p′2 //

p′1

��

(0×!C ,∇C 2C) + C

( p2ι2 )

��

C ι1
// 2C

If we further assume that C = V is a variety, we only need to consider the above
diagram in the case where C is the free algebra on one generator. We obtain the diagram

P + Fr({y})

( p2s )
xx

P

p1

��

p2
//

ι′1

11

Fr({x, y})

p

��

Fr(∅)
!
// Fr({y})

s

OO ι′2

EE

where p and s are determined by p(x) = y = p(y) and s(y) = y. Theorem 4.1 says that V
is protomodular if and only if x is in the image of ( p2s ). The pullback P is described as

P = {(c, d(x, y)) ∈ Fr(∅)× Fr({x, y}) | c = d(y, y) is an identity in the theory of V}

where c represents a constant term and d(x, y) a binary term. The image of ( p2s ) in
Fr({x, y}) is given by

Im ( p2s ) = {π(d1(x, y), . . . , dn(x, y), u1(y), . . . , um(y)) |n,m > 0, π is an (n+m)-ary term,

(ci, di(x, y)) ∈ P for each 1 6 i 6 n and ui(y) ∈ Fr({y}) for each 1 6 i 6 m}
= {π′(d1(x, y), . . . , dn(x, y), y) |n > 0, π′ is an (n+ 1)-ary term and

(ci, di(x, y)) ∈ P for each 1 6 i 6 n}.

Therefore, Theorem 4.1 gives in this particular case exactly the characterization of proto-
modular varieties established in [7].
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5.2 Involution-rigidness

The involution-rigidness property has been introduced in [32]. A generalized �xed point of
an involution i : W →W in a category C is a morphism p : P →W such that i ◦ p = p. A
morphism f : Y → W in C is said to be rigid under the involution i : W → W when i ◦ f
factors through any monomorphismm : V �W through which f and any generalized �xed
point of i factor. A category has the involution-rigidness property when every morphism
f : Y → W is rigid under any involution i : W → W . In the regular context, this is
equivalent to requiring that for any morphism f : Y →W and any involution i : W →W ,
considering the equalizer

E
e //W

i //

1W
//W,

and any factorizations f = g ◦ f ′ and e = g ◦ e′ of f and e through a common morphism
g : V →W and taking the pullback X of g along i ◦ f ,

X
r //

q

��

V

g

��

Y
i◦f
//W

the morphism q is a strong epimorphism. This property can be stated as the property
α `C β for an exactness sequent α ` β as described in (3). Let A1 be the underlying
sketch of the path category of the graph

Y
f
//W

i

��

equipped with the condition i · i = 1W . We then let B1 ⊇ A1 be the sketch represented by

Y
f
//W

i

��

E
eoo

conditions from A1 together with:
(E, e) represents the equalizer of i and 1W .

Now let A2 be the path category of the graph

Y
f
//

f ′
  

W

i

��

E
eoo

e′
~~

V

g

OO

equipped with the conditions i · i = 1W , f = g · f ′ and e = g · e′. By Lemma 3.2 in [25],
A2 is a �nite category. Let A2 ⊇ B1 be the underlying sketch of A2 further equipped
with the commutativity and convergence conditions from B1. Let B2 ⊇ A2 be the sketch
represented by

Y
f
//

  
f ′

W

i

��

E
eoo

e′
~~

X

q

OO

r
// V

g

OO conditions from A2 together with:
(X, q, r) represents the pullback of i ◦ f along g.
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Finally, we de�ne A and B as prescribed by condition (Ax 4) for the arrow q : X → Y
of B2. We thus have an exactness sequent

∅ α1 //

α

22A1
β1
// B1

α2 // A2
β2
// B2

ω // A β
// B

satisfying conditions (Ax 0)�(Ax 5) and such that, for any regular category C, α `C β
holds if and only if C has the involution-rigidness property. For (Ax 5), we consider HY
to be the graph with a single object ∗ and no arrow, DY : HY → A1 to be de�ned by
DY (∗) = Y and pY∗ to be the empty path on Y .

Let C be a regular category with �nite colimits. Given any object C in C, the Kan
extension Lan

D
B2
Y

∆C of the constant diagram ∆C : HY → C, constructed in the general

case in Section 2, is described as follows. We �rst need to compute the left Kan extension
L1 = LanDY ∆C : A1 → C of ∆C along DY . Using the pointwise Kan extension formula,
it is given by the following A1-structure.

C
ι2 // 2C

( ι2ι1 )

��

To describe its extension L1 as a B1-structure, we only need to compute the equalizer
e : E → 2C of ( ι2ι1 ) and the identity on 2C.

C
ι2 // 2C

( ι2ι1 )

��

E
eoo

We then need to compute its extension L2 as an A2-structure via the pointwise Kan
extension formula. We obtain the A2-structure represented by:

C
ι2 //

ι′1
  

2C

( ι2ι1 )

��

E
eoo

ι′2
~~

C + E

( ι2e )

OO

Finally, the B2-structure L2 = Lan
D
B2
Y

∆C is obtained by computing the pullback P of

( ι2e ) along ( ι2ι1 ) ◦ ι2 = ι1.

C
ι2 //

!!

ι′1

2C

( ι2ι1 )

��

E
eoo

ι′2
}}

P p1
//

p2

OO

C + E

( ι2e )

OO

Theorem 3.1 says that a regular category C with binary coproducts has the involution-
rigidness property if and only if, for any object C in C, the morphism p2 : P → C as
constructed above is a regular epimorphism.
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If we further assume that C = V is a variety, we only need to consider the above
diagram in the case where C = Fr({x}) is the free algebra on one generator. We then get
2C = Fr({x1, x2}) and

E = {a(x1, x2) ∈ Fr({x1, x2}) | a(x2, x1) = a(x1, x2)}.

The image of p2 in Fr({x}) can be described as

Im(p2) = {u(x) ∈ Fr({x}) | ∃n,m > 0, π an (n+m)-ary term, u1(x), . . . , un(x) ∈ Fr({x})
and a1(x1, x2), . . . , am(x1, x2) ∈ E such that

π(u1(x2), . . . , un(x2), a1(x1, x2), . . . , am(x1, x2)) = u(x1)}
= {u(x) ∈ Fr({x}) | ∃m > 0, π′ a (1 +m)-ary term

and a1(x1, x2), . . . , am(x1, x2) ∈ E
such that π′(x2, a1(x1, x2), . . . , am(x1, x2)) = u(x1)}.

Theorem 4.1 tells us that V has the involution-rigidness property if and only if x ∈ Im(p2),
which is the characterization obtained in [32].

5.3 The Mal'tsev property

Mal'tsev categories have been introduced in [12] as �nitely complete categories in which
every binary relation is difunctional. In a regular context, this is equivalent to the condition
that for each diagram

R
r1

��

r2

��

A B

Y

a1

__

a2

__

b1

??

b2

??

y1

OO

y2

OO

y3

OO

where r1 ◦ y1 = a1, r2 ◦ y1 = b1, r1 ◦ y2 = a1, r2 ◦ y2 = b2, r1 ◦ y3 = a2 and r2 ◦ y3 = b2,
considering the product of A and B and the following pullback,

X
p

//

q

��

R

(r1,r2)

��

Y
(a2,b1)

// A×B

the morphism q : X → Y is a strong epimorphism. This formulation of the Mal'tsev
property on a regular category C can be expressed as the condition α `C β for an exactness
sequent α ` β as described in (3) with n = 1. Theorem 3.1 then tells us that a regular
category C with �nite copowers is a Mal'tsev category if and only if, for any object C ∈ C,
the projection p2 in the pullback

P
p1

//

p2

��

3C(
ι1 ι1
ι1 ι2
ι2 ι2

)
��

C
(ι2,ι1)

// (2C)2
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is a strong epimorphism. This characterization has been established in [8]. Theorem 4.1
says in this particular case that a variety V is a Mal'tsev category if and only if there
exists a ternary term p(x, y, z) satisfying the identities p(x, x, y) = y and p(x, y, y) = x as
established in [34].

In the regular context, the Mal'tsev property is thus a property of the form α `C β
for an exactness sequent α ` β as described in (3) such that, moreover, n = 1 and the
procedures (b), (f) and (g) have not been used in condition (Ax 3). This kind of exactness
properties in the regular context is the subject of [24] where it is proved that these are
exactly the �nite conjunctions of matrix conditions as introduced in [29] (in the theory
Th[Set] of sets). See Subsection 6.3 for more details.

Let us now study another exactness sequent describing the Mal'tsev property. It has
been shown in [5] that a �nitely complete category C is a Mal'tsev category if and only if
for each diagram

B

g

����

A
f
// //
C

OO
t

OO

oo
s

oo

where f ◦ s = 1C = g ◦ t, considering the pullback (Y, p1, p2) of f along g, the morphisms
l : A → Y and r : B → Y determined by p1 ◦ l = 1A, p2 ◦ l = t ◦ f , p1 ◦ r = s ◦ g and
p2 ◦ r = 1B are jointly strongly epimorphic, i.e., for any extension of the diagram as

X
q

  

Y
p2

// //

p1

����

B

g

����

oo
r

oo

k
mm

A
f

// //

OO

l

OO

h

RR

C

OO

t

OO

oo
s

oo

with q ◦ h = l and q ◦ k = r, the morphism q : X → Y is a strong epimorphism. It is not
hard to construct an exactness sequent

∅ α1 //

α

22A1
β1
// B1

α2 // A2
β2
// B2

ω // A β
// B

as in (3) which describes this property, i.e., such that α `C β holds for a �nitely complete
category C if and only if C is a Mal'tsev category. Theorem 3.1 applied to this partic-
ular exactness sequent gives that a �nitely complete category C with binary copowers
is a Mal'tsev category if and only if, for any object C ∈ C, considering the kernel pair

Eq[∇C ] of ∇C =
(

1C
1C

)
: 2C → C, the morphism w =

(
ι1 ι2
ι2 ι2
ι2 ι1
ι2 ι2

)
: 4C → Eq[∇C ] is a strong
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epimorphism.

4C

w

$$

Eq[∇C ]
p2

// //

p1

����

2C

∇C

����

oo
r

oo

(
ι′3
ι′4

)
mm

2C
∇C // //

OO

l

OO(
ι′1
ι′2

)

TT

C

OO

ι2

OO

oo
ι2

oo

Moreover, if C = V is a variety, we only need to consider this diagram when C = Fr({x})
is the free algebra on one generator. In this case, Eq[∇Fr({x})] can be described as

Eq[∇Fr({x})] = {(a(x1, x2), b(x1, x2)) ∈ Fr({x1, x2})2 | a(x, x) = b(x, x)}

and the morphism w : Fr({y1, y2, y3, y4})→ Eq[∇Fr({x})] is determined by w(y1) = (x1, x2),
w(y2) = (x2, x2), w(y3) = (x2, x1) and w(y4) = (x2, x2). Theorem 4.1 says in this case
that V is a Mal'tsev category if and only if eFr({x})(x) = (x1, x1) ∈ Eq[∇Fr({x})] is in
the image of w, that is if and only if there exists a quaternary term t(y1, y2, y3, y4) such
that t(x1, x2, x2, x2) = x1 and t(x2, x2, x1, x2) = x1 are theorems of the theory of V.
This is of course equivalent to the well-known characterization of Mal'tsev varieties; to
see this, given such a quaternary term t(y1, y2, y3, y4), one can construct a Mal'tsev term
as p(x, y, z) = t(x, y, z, y) and given a Mal'tsev term p(x, y, z), one can construct such a
quaternary term as t(y1, y2, y3, y4) = p(y1, y2, y3).

6 The pointed context

One can also consider the pointed version of the class of exactness sequents described
in (3). We consider here exactness sequents α ` β that can be decomposed as sequences
of subsketch inclusions as in

∅ β0
//

α

33B0
α1 // A1

β1
// B1

α2 // · · · αn // An
βn
// Bn ω // A β

// B (6)

satisfying conditions (Ax 0 *), (Ax 1), (Ax 2), (Ax 3), (Ax 4) and (Ax 5) where (Ax 1)�
(Ax 5) are as in (3) and (Ax 0 *) is now:

(Ax 0 *) n > 1 is a natural number, α = ω ◦ βn ◦ αn ◦ · · · ◦ β1 ◦ α1 ◦ β0 and B0 is the sketch
with a single object Z, no arrows, no commutativity conditions and

(Z,∅) = limit(∅, D!) and (Z,∅) = colimit(∅, D!)

as convergence conditions where D! is the unique diagram ∅→ B0.

In other words, the convergence conditions in B0 just say that Z represents a terminal
and initial object, i.e., a zero object. Therefore, all the sketches A1, B1, . . . , An and Bn
contain the object Z with the conditions saying it represents a zero object.

If C is a pointed category with �nite limits, the condition α `C β means as before:
`for any Bn-structure Fn in C, the morphism Fn(q) is a strong epimorphism'. Moreover, if
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C is a �nitely bicomplete pointed category, the functors (β1)C,. . . ,(βn)C are equivalences
of categories. The condition α `C β can then be reformulated in this case as: `for any
A1-structure F1 in C, considering its extension F1 as a B1-structure, for any extension of it
as an A2-structure F2, considering its extension F2 as a B2-structure, . . . , for any extension
of Fn−1 as an An-structure Fn, considering its extension Fn as a Bn-structure, then Fn(q)
is a strong epimorphism'.

Let C be a �nitely bicomplete pointed category and let us consider the diagram
DY : HY → A1 given by condition (Ax 5). Viewing HY as a sketch with no conditions, the
functor (DY )C has a left adjoint LanDY : HY C → A1C. Given any diagram E : HY → C,
the left Kan extension LanDY E : A1 → C of E along DY

HY
DY //

E
!!

A1

LanDY E

��

C

λE

7?

can be computed via the pointwise pointed left Kan extension formula (see e.g. [13]): For
an object A ∈ A1, let (D ↓ A)∗ be the graph obtained from the graph (D ↓ A) by adding an
object 1 and arrows !(H,f) : (H, f) → 1 for any (H, f) ∈ (D ↓ A) such that f : D(H) → A
factors through Z ∈ B0. We denote by ψA : (D ↓ A)∗ → C the diagram de�ned on objects
by ψA(H, f) = E(H) and ψA(1) = 0, the zero object of C, and on arrows by ψA(h) =
E(h) and ψA(!(H,f)) is the unique morphism E(H) → 0. The object (LanDY E)(A) is

the colimit of this diagram ψA and we denote by sA(H,f) : E(H) → (LanDY E)(A) and

sA1 : 0→ (LanDY E)(A) the colimit legs. Given an arrow a : A→ A′ in A1, the morphism
(LanDY E)(a) is the unique morphism such that (LanDY E)(a) ◦ sA(H,f) = sA

′

(H,a◦f) for any

(H, f) ∈ (D ↓ A). The E-component λE of the unit is determined by λEH = s
D(H)
(H,1D(H))

for any object H ∈ H. Using now the left-adjoint-right-inverses of (α2)C, . . . , (αn)C given
by Lemma 2.1 and the pseudo-inverse-strict-right-inverses of (β1)C, . . . , (βn)C, we obtain a
left adjoint

Lan
DBnY

: HY C→ BnC

of (DBnY )C. For a diagram E : HY → C, the left Kan extension Lan
DBnY

E is obtained as in

the non-pointed case by �rst constructing the left Kan extension λE : E → L1 ◦ DY and
then successively extend it to L1, L2, . . . , Ln, Ln. We then set Lan

DBnY
E = Ln with the

universal morphism
λE : E → L1 ◦DY = (Lan

DBnY
E) ◦DBnY .

As in the non-pointed case, for each object C in C, there is a unique morphism eC : C →
(Lan

DBnY
∆C)(Y ) such that

(Lan
DBnY

∆C)(pYH) ◦ eC = λ∆C
H

for each H ∈ HY . We consider the pullback

Ap(C)
δC //

γC

��

(Lan
DBnY

∆C)(X)

(Lan
D
Bn
Y

∆C)(q)

��

C eC
// (Lan

DBnY
∆C)(Y )
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and de�ne the endofunctor Ap: C→ C and the natural transformation γ : Ap→ 1C as in
the non-pointed case.

The pointed versions of Theorems 3.1 and 4.1 become the following ones, whose proofs
are omitted since they are completely analogous to the non-pointed case. Remark 3.2 on
the existence of colimits needed is still valid for Theorem 6.1.

Theorem 6.1. Let C be a �nitely bicomplete pointed category and α ` β an exactness

sequent as described in (6). We consider the following statements:

1. α `C β;

2. for any diagram E : HY → C, the morphism (Lan
DBnY

E)(q) is a strong epimorphism

in C;

3. for any object C in C, the morphism (Lan
DBnY

∆C)(q) is a strong epimorphism in C;

4. for any object C in C, the morphism γC : Ap(C)→ C is a strong epimorphism in C.

We always have the implications 1 ⇔ 2 ⇔ 3 ⇐ 4. Moreover, if C is regular, we also have

the remaining implication 3 ⇒ 4.

Theorem 6.2. Let V be a pointed variety of universal algebras. Let also α ` β be an

exactness sequent as described in (6). Then, the following statements are equivalent:

1. α `V β;

2. for any diagram E : HY → V, the morphism (Lan
DBnY

E)(q) is surjective;

3. for any V-algebra A, the morphism (Lan
DBnY

∆A)(q) is surjective;

4. for any V-algebra A, the morphism γA : Ap(A)→ A is surjective;

5. the morphism (Lan
DBnY

∆Fr({?}))(q) is surjective;

6. the morphism γFr({?}) : Ap(Fr({?}))→ Fr({?}) is surjective;

7. the element eFr({?})(?) is in the image of (Lan
DBnY

∆Fr({?}))(q);

8. the element ? is in the image of γFr({?}) : Ap(Fr({?}))→ Fr({?}).

6.1 Unitality

A �nitely complete pointed category C is unital [5] if for any two objects A and B, the
induced morphisms (1A, 0) : A→ A×B and (0, 1B) : B → A×B to the product A×B of
A and B are jointly strongly epimorphic. This property can be stated in the form α `C β
for an exactness sequent α ` β as described in (6). In the display of particular sketches
below, we use the same abbreviations as in Section 5. Let B0 be the sketch described in
condition (Ax 0 *) and let A1 be the discrete category on three objects A, B and Z. Let
A1 ⊇ B0 be the underlying sketch of A1 further equipped with the convergence conditions
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requiring Z to represent a zero object. Let B1 ⊇ A1 be the sketch displayed as

Y

pA

��

pB

��

A
0A,B

//

��

0A,Z

l

??

B
0B,A

oo

��

0B,Z

r

__

Z

0Z,A

__

0Z,B

??

conditions from A1 together with:
(Y, pA, pB) represents the product of A and B
0A,B = 0Z,B · 0A,Z
0B,A = 0Z,A · 0B,Z
pA · l = 1A
pB · l = 0A,B
pA · r = 0B,A
pB · r = 1B.

Let A2 be the path category of the graph

X

q

��

Y
pA

��

pB

  

A
0A,B

//

��

0A,Z

l

??

f

>>

B
0B,A

oo

~~

0B,Z

r

``

g

__

Z

0Z,A

__

0Z,B

>>

equipped with the conditions q ·f = l, q ·g = r, 0AZ ·0ZA = 1Z , 0BZ ·0ZB = 1Z and the last
six commutativity conditions written in the above de�nition of B1. We set B2 = A2 ⊇ B1 to
be the underlying sketch of A2 together with the commutativity and convergence conditions
from B1. Finally we de�ne A and B as prescribed by condition (Ax 4) for the arrow
q : X → Y in B2. We have constructed an exactness sequent

∅ β0
//

α

22B0
α1 // A1

β1
// B1

α2 // A2
β2
// B2

ω // A β
// B

satisfying conditions (Ax 0 *), (Ax 1)�(Ax 5) and such that, for any �nitely complete
pointed category C, α `C β holds if and only if C is unital. The graph HY of condi-
tion (Ax 5) can be chosen to be the graph with two objects ∗A and ∗B and no arrows, and
we set DY (∗A) = A, DY (∗B) = B, pY∗A = pA and pY∗B = pB.

Given a �nitely bicomplete pointed category C and an object C ∈ C, the Kan extension
Lan

D
B2
Y

∆C is constructed as follows. Using the pointwise pointed Kan extension formula,

we know that (LanDY ∆C)(A) = C = (LanDY ∆C)(B) and (LanDY ∆C)(Z) = 0. The
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extension Lanβ1◦DY ∆C of LanDY ∆C as a B1-structure is described by:

C × C

p1

~~

p2

  

C
0 //

0

!!

(1C ,0)

>>

C
0

oo

0

}}

(0,1C)

``

0

0

aa

0

==

Finally, we can compute that Lanα2◦β1◦DY ∆C = Lan
D
B2
Y

∆C is described by:

C + C

(
1C 0
0 1C

)
��

C × C

p1

~~

p2

  

C
0 //

0

!!

(1C ,0)

>>

ι1

>>

C
0

oo

0

}}

(0,1C)

``

ι2

``

0

0

aa

0

==

Applying Theorem 6.1 (together with Remark 3.2) to this situation gives us the well-known
fact that a �nitely complete pointed category C with binary copowers is unital if and only

if, for any object C ∈ C, the morphism
(

1C 0
0 1C

)
: C+C → C×C is a strong epimorphism.

Moreover, it also gives that a regular pointed category C with binary copowers is unital if
and only if, for any object C ∈ C, the projection γC in the pullback

Ap(C)
δC //

γC

��

C + C

(
1C 0
0 1C

)
��

C
eC=(1C ,1C)

// C × C

is a regular epimorphism; a result which already appears in [30]. Theorem 6.2 tells us that
a pointed variety V is unital if and only if the element (x, x) is in the image of the morphism
h : Fr({x1, x2}) → Fr({x})2 determined by h(x1) = (x, 0) and h(x2) = (0, x) where 0 is
the unique constant in the theory of V. This happens if and only if there exists a binary
term u(x1, x2) in the theory of V satisfying the identities u(x, 0) = x and u(0, x) = x. This
characterization goes back at least to [3].
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6.2 Strong unitality

Strongly unital categories have been introduced in [5]. In [3], they have been characterized
as �nitely complete pointed categories such that, for any diagram

A
// s //

X
f
oooo

g
// // B
ootoo

where f ◦ s = 1A, g ◦ t = 1B and f ◦ t = 0, the induced morphism (f, g) : X → A × B is
a strong epimorphism. We can express this property in the form α `C β for an exactness
sequent α ` β as described in (6). Let B0 be as in condition (Ax 0 *) and let G1 be the
graph

Z A
s // X
f
oo

g
// B

too

to which we add, for any pair of object (V,W ), an arrow 0V,W : V →W . Let A1 be the path
category of G1 equipped with the conditions f · s = 1A, g · t = 1B, f · t = 0B,A, 0Z,Z = 1Z
and all conditions of the form 0V2,W · h = 0V1,W or of the form h · 0W,V1 = 0W,V2 for an
arrow h : V1 → V2 and objects V1, V2,W in G1. Notice that A1 is a �nite pointed category
with zero object Z (although we do not need in general that Z is a zero object of A1). Let
A1 ⊇ B0 be the underlying sketch of A1 further equipped with the convergence conditions
from B0. Let B1 ⊇ A1 be the sketch displayed below (using the same abbreviations as in
Section 5 and also omitting the zero morphisms from A1).

Y
pA

~~

pB

  

Z A
s // X
f

oo
g
//

q

OO

B
too

conditions from A1 together with:
(Y, pA, pB) represents the product of A and B
pA · q = f
pB · q = g.

Let A and B be the sketches given by condition (Ax 4) for the arrow q : X → Y in B1. We
have constructed an exactness sequent

∅ β0
//

α

33B0
α1 // A1

β1
// B1

ω // A β
// B

satisfying conditions (Ax 0 *), (Ax 1)�(Ax 5) and such that, for any �nitely complete
pointed category C, α `C β holds if and only if C is strongly unital. As before, the graph
HY is chosen to be the graph with two objects ∗A and ∗B and no arrows, and we set
DY (∗A) = A, DY (∗B) = B, pY∗A = pA and pY∗B = pB.

For an object C in a �nitely bicomplete pointed category C, the left Kan extension
LanDY ∆C can be computed via the pointwise pointed left Kan extension formula, and can
be extended to the Kan extension Lan

D
B1
Y

∆C displayed below

C × 2C
p1

��

p2

��

0 C
ι1 // 3C(
1C
0
0

)oo  ι′2
ι′2
ι′1


//

h

OO

2C
( ι3ι2 )

oo
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where h =

(
1C ι′2
0 ι′2
0 ι′1

)
. Theorem 6.1 tells us in this case that a �nitely complete pointed

category C with �nite copowers is strongly unital if and only if, for any object C ∈ C, the

morphism

(
1C ι′2
0 ι′2
0 ι′1

)
: 3C → C × 2C is a strong epimorphism. Moreover, it also says that

a regular pointed category C with �nite copowers is strongly unital if and only if, for each
object C ∈ C, the projection γC in the pullback

Ap(C)
δC //

γC

��

3C 1C ι′2
0 ι′2
0 ι′1


��

C
eC=(1C ,ι

′
1)
// C × 2C

is a regular epimorphism; a result which already appears in [30]. Theorem 6.2 applied
here says that a pointed variety V is strongly unital if and only if the element (x, x1) is in
the image of the morphism h : Fr({y1, y2, y3})→ Fr({x})× Fr({x1, x2}) as de�ned above,
i.e., if and only if there exists a ternary term p(y1, y2, y3) in the theory of V satisfying the
identities p(x, 0, 0) = x and p(x2, x2, x1) = x1 (where 0 is the unique constant in the theory
of V). This characterization goes back at least to [3].

6.3 Additional examples

Matrix conditions have been introduced in [28] and generalized in [29]. To each extended
matrix (M,X ) of terms in the theory Th[Set∗] of pointed sets (in the sense of [29]) is
associated the exactness property on a regular pointed category to have (M,X )-closed re-
lations. The exactness properties of being a unital category or a strongly unital category
are examples of such properties, but also the property of being a subtractive category [27].
For each such extended matrix (M,X ), one can construct an exactness sequent α ` β as
described in (6) with n = 1 such that a regular pointed category C has (M,X )-closed
relations if and only if α `C β holds. Theorem 6.1 gives in this particular case the approx-
imate co-operation characterization of these properties, initiated in [8] and generalized in
[30, 19, 22]. Theorem 6.2 gives the characterization of pointed varieties satisfying those
properties proved in [28, 29]. The non-pointed version of this also holds for extended ma-
trices (M,X ) of terms in the theory Th[Set] of sets as mentioned in Subsection 5.3 and
explained in [24]. This includes the following exactness properties in the regular context:
being a Mal'tsev category [11], being an n-permutable category [10] and being a majority
category [17].

The property on a pointed regular category C to be a normal category [31] (i.e., every
regular epimorphism is a normal epimorphism) can be expressed in the form α `C β for
an exactness sequent α ` β as described in (6). To see this, one can reformulate the
property as follows: given any morphism f , considering its kernel pair (R, r1, r2) and its
kernel (K, k), then any morphism g such that g ◦ k = 0 satis�es g ◦ r1 = g ◦ r2, or in other
words, the equalizer of g ◦ r1 and g ◦ r2 is a strong epimorphism. Theorem 6.1 applied to
this particular case says that a regular �nitely cocomplete pointed category C is normal if
and only if the codiagonal ∇C : 2C → C is a normal epimorphism for all objects C in C.
Theorem 6.2 tells us that a pointed variety is normal (also called a variety with ideals

according to [14]) if and only if the variables x1 and x2 are coequalized by the cokernel of
the kernel of the codiagonal Fr({x1, x2}) → Fr({x}). Making explicit the equality in this
cokernel, one gets the characterization of varieties with ideals from [14].
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The property on a �nitely complete pointed category to have normal projections [26]
and the property on a regular pointed category with coequalizers to have products com-
muting with coequalizers can be treated similarly to normality. For the latter, one should
use the second part of point 3 in Proposition 2.9 in [18]. In both cases, Theorem 6.2 gives
us the free algebras one should consider to extract the algebraic conditions characterizing
these properties for pointed varieties, appearing in [26] and [18] respectively. The remain-
ing task to get these characterizations is to express the equality of some elements in a
certain coequalizer.

7 Further remarks

Remark 7.1. It has recently been shown (see [19, 20, 21, 22, 23, 24]) that the study of
exactness properties is strongly related with the study of essentially algebraic categories [1]
(i.e., locally presentable categories [15]). In a similar way as in [24], Theorem 4.1 can be
generalized to any essentially algebraic category. We treated only the varietal case in the
body of the paper for the sake of simplicity. Using the notation from [24], we now �x an
essentially algebraic theory Γ = (S,Σ, E,Σt,Def). We recall that the category of models
Mod(Γ) has a (strong epi, mono)-factorization system (but strong epimorphisms are in
general not sort-wise surjective). For each sort s ∈ S, we denote by {?s} the S-sorted set
with a single element ?s in the sort s and nothing in the other sorts. The homomorphism
eFr({?s}) : Fr({?s}) → (Lan

DBnY
∆Fr({?s}))(Y ) from the free Γ-model on {?s} induces an

element (eFr({?s}))s(?s) in (Lan
DBnY

∆Fr({?s}))(Y )s. We can then generalize Theorem 4.1 as

follows.

Theorem 7.2. Let Γ = (S,Σ, E,Σt,Def) be an essentially algebraic theory. Let also α ` β
be an exactness sequent as described in (3). The following statements are equivalent:

1. α `Mod(Γ) β;

2. for any diagram E : HY → Mod(Γ), the morphism (Lan
DBnY

E)(q) is a strong epi-

morphism;

3. for any Γ-model A, the morphism (Lan
DBnY

∆A)(q) is a strong epimorphism;

4. for each sort s ∈ S, the morphism (Lan
DBnY

∆Fr({?s}))(q) is a strong epimorphism;

5. for each sort s ∈ S, the element (eFr({?s}))s(?s) is in the image of (Lan
DBnY

∆Fr({?s}))(q).

Proof. The equivalences 1⇔ 2⇔ 3 follow immediately from Theorem 3.1. The implications
3 ⇒ 4 ⇒ 5 being trivial, it remains to prove 5 ⇒ 1. So let Fn be any Bn-structure in
Mod(Γ) and let us show that Fn(q) is a strong epimorphism. Given any sort s ∈ S and any
element y ∈ Fn(Y )s, we must show that y is in the image of Fn(q). We consider the unique
homomorphism of Γ-models f : Fr({?s}) → Fn(Y ) such that fs(?s) = y. Considering the
morphism of Bn-structures ν : Lan

DBnY
∆Fn(Y ) → Fn as in the proof of Theorem 3.1, we
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know that the following diagram commutes.

(Lan
DBnY

∆Fr({?s}))(X)
(Lan

D
Bn
Y

∆f )X
//

(Lan
D
Bn
Y

∆Fr({?s}))(q)

��

(Lan
DBnY

∆Fn(Y ))(X)
νX //

(Lan
D
Bn
Y

∆Fn(Y ))(q)

��

Fn(X)

Fn(q)

��

(Lan
DBnY

∆Fr({?s}))(Y )
(Lan

D
Bn
Y

∆f )Y

// (Lan
DBnY

∆Fn(Y ))(Y )
νY // // Fn(Y )

Fr({?s})
f

//

eFr({?s})

OO

Fn(Y )

OO

eFn(Y )

OO
88

1Fn(Y )

Since y = fs(?s) = (νY ◦ (Lan
DBnY

∆f )Y ◦ eFr({?s}))s(?s) and since (eFr({?s}))s(?s) is in the

image of (Lan
DBnY

∆Fr({?s}))(q), we know that y is in the image of Fn(q)◦νX◦(Lan
DBnY

∆f )X

and thus in the image of Fn(q).

For the pointed version of this theorem, we recall (see e.g. [19]) that an essentially
algebraic theory Γ = (S,Σ, E,Σt,Def) gives rise to a pointed category Mod(Γ) if and only
if, there exists in Γ, for each sort s ∈ S, a unique everywhere-de�ned constant term 0s

of sort s, and every constant term is everywhere-de�ned (and thus equal to a 0s). The
pointed version of Theorem 7.2, proved in an analogous way, is the following theorem which
generalizes Theorem 6.2.

Theorem 7.3. Let Γ = (S,Σ, E,Σt,Def) be an essentially algebraic theory whose category

of models Mod(Γ) is pointed. Let also α ` β be an exactness sequent as described in (6).

The following statements are equivalent:

1. α `Mod(Γ) β;

2. for any diagram E : HY → Mod(Γ), the morphism (Lan
DBnY

E)(q) is a strong epi-

morphism;

3. for any Γ-model A, the morphism (Lan
DBnY

∆A)(q) is a strong epimorphism;

4. for each sort s ∈ S, the morphism (Lan
DBnY

∆Fr({?s}))(q) is a strong epimorphism;

5. for each sort s ∈ S, the element (eFr({?s}))s(?s) is in the image of (Lan
DBnY

∆Fr({?s}))(q).

Remark 7.4. Notice that in an exactness sequent α ` β

∅ α1 //

α

33A1
β1
// B1

α2 // · · · αn // An
βn
// Bn ω // A β

// B

as described in (3), the subsketch inclusion α is in general not unconditional of �nite kind.
One can construct from q ∈ Bn a constructible subsketch inclusion β′ : Bn → B′ such that
the property

`for any A1-structure F1 in C, considering its extension F1 as a B1-structure, for
any extension of it as an A2-structure F2, considering its extension F2 as a B2-
structure, . . . , for any extension of Fn−1 as an An-structure Fn, its extension
Fn as a Bn-structure extends to a B′-structure'
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represented by the sequence

∅ α1 // A1
β1
// B1

α2 // · · · αn // An
βn
// Bn

β′
// B′

holds for a regular �nitely cocomplete category C if and only if α `C β holds. This new
exactness property could be seen as an `n-th order exactness property' (although this notion
has not yet been formalized) for which the odd inclusions α1, . . . , αn are unconditional
of �nite kind and the even inclusions β1, . . . , βn−1, β

′ ◦ βn are constructible. We build
β′ : Bn → B′ from q via the following two steps:

1. include an object R (not already in Bn) and arrows r1, r2 : R ⇒ X, together with
the convergence condition `(R, r1, r2) represents the kernel pair of q',

2. then include the convergence condition `(Y, q) represents the coequalizer of r1 and r2'.

The stated equivalence between the two mentioned exactness properties follows immedi-
ately from the fact that in a regular category, strong epimorphisms coincide with regular
epimorphisms.

Conjecture 7.5. Theorem 4.1 gives, for an exactness sequent α ` β as in (3), a charac-
terization of the condition α `V β on a variety V. As explained in Section 5 for particular
examples, it seems that the statement 8 of that theorem can always be reformulated as
a Mal'tsev condition. However, we have not been able to formally prove this fact in gen-
eral but we conjecture it is always the case. By a Mal'tsev condition, we mean here a
disjunction of (non-necessarily nested) strong Mal'tsev conditions (where `strong Mal'tsev
condition' is understood in its classical sense, see e.g. [33]).

Conjecture 7.6. We also conjecture that for any exactness sequent α ` β as described
in (3), there exists another such exactness sequent α′ ` β′ for which the procedures (b),
(f) and (g) from condition (Ax 3) are not used and for which α′ `C β′ holds for a �nitely
bicomplete category C if and only if α `C β holds.
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